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LETTER TO THE EDITOR 

Conduction of small constrictions in a magnetic field in 
the ballistic regime 

K B Efetovi 
Max-Planck-Institut fur Festkorperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, 
Federal Republic of Germany 

Received 8 May 1989 

Abstract. The conductance of a constriction in a magnetic field in the ballistic regime is 
considered. It is shown that if the edges of the construction are smooth the conductance is 
quantised in units 2ez/h, which are independent of the magnetic field. The linear response 
theory and the quasi-classical approximation are used for the calculations. 

In recent experiments on microscopic constructions a step-like dependence of the 
conductance on the width of the constriction was discovered (van Wees er a1 1988a, 
Wharam er a1 1988). The quantisation of the conduction in integer units of 2e2/h is closely 
related to the possibility of electrons moving through the constriction in the ballistic 
regime. The first explanation of this effect was given by van Wees er a1 (1988a) and 
Wharam et a1 (1988) with the help of a one-dimensional model and the Landauer 
relations (Imry 1986). In this model each band corresponding to different wavevectors 
of transversal quantisation gives the contribution 2e2/h. It was also discovered that the 
quantisation of the conductance is not destroyed by a magnetic field (van Wees er a1 
1988b). 

A one-dimensional model including a magnetic field and finite frequency was con- 
sidered by Kramer and MaSek (1988) and MaSek and Kramer (1988,1989), where Kubo- 
type formulae were used for calculations of the conductance. However, the constrictions 
available experimentally are far from being one dimensional. Besides Kramer and 
MaSek (1988) made an additional assumption that the electric field does not depend on 
the coordinates. But this assumption can in principle contradict the continuity equation. 

A model of a constriction with slowly varying width was considered by Glazman er 
a1 (1988) where the shape of the steps was related to the geometry of the constriction. 
In this work all results were obtained in the absence of a magnetic field on the basis of 
the Landauer formula (Imry 1986). A model analogous to the one used in Glazman et 
a1 (1988) is considered below. Now the consideration includes the case of a non-zero 
magnetic field. All calculations are based on the Kubo formulae for a linear response, 
which also enable finite frequencies to be considered. The dependence of the electric 
field on the coordinate along the constriction is supposed to be arbitrary. In principle 
this dependence can be found after solving the Maxwell equations. However, as may be 
seen from the calculations presented below, in the regime of the ballistic transport at 
zero frequency the current through the constriction is completely determined by the 
t On leave from L D Landau Institute for Theoretical Physics, Moscow, USSR. 
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voltage difference. In this case the information about the dependence of the electric 
field on the coordinate is not important. 

The current can be written as the response to an electric field %(r)  in the following 
form 

j w ( r )  = /Xu(. ,  r’)%,(r’)  dr’  dr i  (1) 

where r I  is the transversal coordinate. The real part gw(r ,  r ’ )  of Xw(r ,  r ’ )  determines 
dissipation and has the following form 

( Y ~ ( E )  - I ~ ( E  + CO)) C. I J , , , / ~ ~ ( E  - E,)S(E + w - E,) (2)  
W f f .B 

where I Z ( E )  is the Fermi distribution, and I,,, are the matrix elements of the current 
operator 

For a homogeneous magnetic field B the Schrodinger equation takes the form 

- (1 /2m)[(a /dx)  - (ie/c)ByI2Y - (1 /2m) (d2Y /ay2)  + u ( x , y ) Y  = E Y .  ( 3 )  

In (3) u(x,  y) is a potential describing the walls of the constriction. Glazman et a1 (1988) 
used certain boundary conditions instead of the potential u(x ,  y ) .  Depending on the 
experimental situation, it is supposed that electrons can move only in the plane {x ,  y } ,  
the axis x being directed along the constriction, y being the transversal coordinate. 

For further calculations let us assume that u(x,  y) slowly varies in x.  In this case one 
can use a quasi-classical approximation when considering the dependence of Y on x. 
The dependence of this function on y can be strong and must be studied exactly. 

In order to take into account these properties of the solution let us represent the 
solution Y ( x ,  y)  in the form 

~ ( x ,  y )  = elU(‘)q(x,  y ,  ~ ’ ( x ) ) .  (4) 

The function q ( x ,  y, ~ ’ ( x ) )  in (4) is a solution of the following equation 

- (1 /2m) (d2q /8y2)  ( x , y ,  ” )  + (1/2”’(x) - ( eB /c )y12q(x , y ,  .’(.)) 

The variable x enters ( 5 )  only as a parameter. Substituting (4) into (3) and using ( 5 )  one 
can obtain an equation for CJ 

- (1/2m)(a2q/ax2)  + & ( X ,  CJ’ (X) )Q1  

- ( i /2m)[d‘ (x)q  + 2(dq /ax ) (o ’ (x )  - eBy/c)]  = Eq. (6) 

Till now no approximations have been made. To go further, let us neglect the first term 
in (6) and assume that solutions of ( 5 )  form a discrete spectrum, thus providing the 
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quantisation of the transversal motion in the constriction. Eigenfunctions rp,, are sup- 
posed to be normalised for arbitrary x :  

j- d ( x ,  y ,  a ‘ (x>)  dy = 1. (7) 

Using the identity 

which follows immediately from (6) and (7), neglecting the term (1 /2m)(d2q/dx2)  in 
(6), multiplying this equation by rp and integrating over y one can obtain the following 
equation 

E , ( x ,  a’(x)> - E = Si(d/dx) ~ E , , ( X ,  a’(x))/dar (9) 

where E,(x,  or(x)) is the nth eigenenergy of ( 5 ) .  
If the magnetic field B is equal to zero one obtains from ( 5 )  

E , ( x ,  o ’ ( x ) )  = ~ I p ) ( x )  + (1 /2m)or2 (x )  

- (1/2m)(d2rp/ay2) + u ( x , y ) q  = &Ao)(x)q. 

(10) 

(11) 

where E ~ ? ( x )  is the nth eigenenergy of the equation 

In this case, substituting (10) into (9) one recovers the corresponding formula of Glazman 
et a1 (1988). 

The assumption about a slow dependence of the potential U on x enables us to solve 
(9) approximately. Representing the solution a(x) of (9) in the form 

an (x )  = o.n~(x)  + ori1 (XI 
where ano(x) is the solution of the equation 

E , ( x ,  aLo(x)) - E = 0 

and considering the RHS of (9) as a perturbation, one can find for the function Y,,(x, y )  

y : ( x , y )  = ( P n ( 4 ) l ’ *  e x p [ - t i ( a 4 4  - % o ( O ) ) l  C p n ( X , Y ,  oL(x)) 

P n ( X )  = % l ( X >  aLo(x))/Wo. 

(12) 

where 

The constricted area connects two large areas where the potential ~ ( x ,  y ,  ) = 0 and 
the electric field % = 0. Therefore one must integrate in (1) only over the area of the 
constriction. In the limit w -+ 0 the sum over the eigenstates in (2)  reduces to the sum 
over diagonal elements of the current operator j .  In the considered quasiclassical 
approximation the action of the current operator j on a wavefunction Y’ reduces to the 
following expression 

= ( e / m ) [ t a i ( x )  - (eB/c)y] Y: = ?ep,(x)Y:(x).  (13) 
Substituting (12) and (13) into (2)  one can see that the functionp,(x) does not enter 

the result. Summation over eigenstates in (2)  reduces to the integration over the energy 
E and summation over different transverse modes. Of course, for each energy E one 
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should take into account the contribution of both the functions Y+ and Y-. The main 
contribution when integrating over coordinates comes from products of the type Y+Y- 
(if the length of the constriction exceeds the wavelength). The result of the integration 
over energies E in (2) depends on the quantity 

Enma, = max(x.o,(xj) [ E , ( x ,  ~'(x>)l. 

The case E > E,,,, corresponds to the absence of classical turning points, when particles 
can move without a reflection (strictly speaking an exponentially small reflection is 
possible). In this case the integration over E for the nth modes gives in the limit w + 0 
unity. Due to the normalisation conditions for the functions q,, the integration over the 
transversal coordinate y also gives unity. If E < E,,,, the contribution of the nth model 
is proportional to the probability of tunnelling through a wide barrier and is small. It is 
interesting to note that in the limit w -+ 0 only the integral 

V =  E(r )  d r  (14) J 
enters the final result for arbitrary E(r ) .  Substituting (12) into (1) and (2) and performing 
integration one can obtain, finally, for the conductance G 

= (2e2/h)nmax(EF)  (15) 
where n,,, is the maximal integer at which the inequality > E,,,, is still valid. The 
slope of curves connecting two different steps is large if the probability of tunnelling 
through a barrier is small. For smooth potentials u(x, y )  the form of the effective barrier 
determined by E ( X ,  ~'(x)) ( 5 )  is also smooth and the probability of the tunnelling is 
small. Only in the case when E ( X ,  ~ ' ( x ) )  is smooth is the quantisation good. 

The accuracy of the quantisation increases when increasing the magnetic field. In 
order to see this effect one should use (lo), which can be written also for B # 0 if ( ~ ' ( x ) )  
is not verylarge. Now E(Pj(x) = E , ( x ,  0), where E,(x, o' (r ) )  is the nth eigenenergy of (9, 
and one should substitute the electron mass m in (10) by an effective mass m* depending 
on the field B. The energy E ( P ) ( x )  becomes more smooth when the field B increases 
because the potential u ( x , y )  is then less important. Besides, the effective mass m* 
grows. Using (9) and (10) one obtains conventional quasi-classical formulae with the 
effective potential Ehoj(x), which becomes more smooth when increasing the magnetic 
field and with the growing mass m*. Hence the quasi-classical approximation becomes 
better and tunnelling through a barrier more difficult. It results in a more perfect 
quantisation. 

Glazman et a1 (1988) showed that the quantisation is good if R b d ,  where R is the 
radius of the curvature of walls and d is the width. This condition holds, provided also 
that the magnetic field is not very large. For large magnetic fields when the magnetic 
length y becomes smaller than the condition of good quantisation becomes weaker 
R 3 y .  The quantisation for large n is worse than that one for n = 1 because the potential 
u(x, y )  in (10) is in this case more important. 

The increase of the accuracy of the quantisation when increasing the magnetic field 
can be seen from the experimental data presented by van Wees e t a 1  (1988b) and Wharam 
et a1 (1988). 

At finite frequencies w the current depends not only on the voltage difference 
but on the whole function E(r ) .  This function must be determined from the Maxwell 
equations. Formulae obtained by Kramer and MaSek (1988) for finite frequencies are 
based on the assumption that the field E is constant. It can give a good qualitative 
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description of the transport but for a quantitative description one should take into 
account fields generated by non-uniform charge distributions. 

In conclusion, it was shown that the conductance of a small constriction in a magnetic 
field is quantised if the shape of the constriction is smooth. Due to the electrostatic 
nature of the potential barriers forming the constrictions the assumption about a smooth 
shape of the potential determining the constriction can correspond to experiments. The 
magnetic field improves the quantisation. 
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